ANNAMALAI UNIVERSITY
 (Accredited with 'A'' Grade by NAAC)
 DIRECTORATE OF DISTANCE EDUCATION
 Annamalainagar - 608002
 Semester Pattern: 2023-24
 Instructions to submit First Semester Assignments

1. Following the introduction of semester pattern, it becomes mandatory for candidates to submit assignment for each course.
2. Assignment topics for each course will be displayed in the A.U, DDE website (www.audde.in).
3. Each assignment contains 5 questions and the candidate should answer all the 5 questions. Candidates should submit assignments for each course separately. (5 Questions x 5 Marks $=25$ marks).
4. Answer for each assignment question should not exceed 4 pages. Use only A4 sheets and write on one side only. Write your Enrollment number on the top right corner of all the pages.
5. Add a template / content page and provide details regarding your Name, Enrollment number, Programme name, Code and Assignment topic. Assignments without template / content page will not be accepted.
6. Assignments should be handwritten only. Typed or printed or photocopied assignments will not be accepted.
7. Send all First semester assignments in one envelope. Send your assignments by Registered Post to The Director, Directorate of Distance Education, Annamalai University, Annamalai Nagar - 608002.
8. Write in bold letters, "ASSIGNMENTS - FIRST SEMESTER" along with PROGRAMME NAME on the top of the envelope.
9. Assignments received after the last date with late fee will not be evaluated.

Date to Remember

Last date to submit first semester assignments : 15.11.2023
Last date with late fee of Rs. 300 (three hundred only) : 30.11.2023

Dr. T.SRINIVASAN
Director

M.Sc., MATHEMATICS
 I - SEMESTER

Course Code : 018E1110 - ABSTRACT ALGEBRA

(5x5=25 Marks)

1. a) Prove that any group of prime order is cyclic and can be generated by any element of the group except the identity.
b) If H and K are finite subgroups of a group G of order $O(H)$ and $O(K)$ respectively then prove that $O(H K)=\frac{O(H) O(K)}{O(H \cap K)}$.
2. a) State and Prove cauchy's theorem for abelian groups.
b) State and Prove sylow's theorem for abelian groups.
c) Let $\varphi: G \rightarrow \bar{G}$ be a homomorphism with $\operatorname{ker} K$ and \bar{N} be a normal subgroup of \bar{G}, where $N=\{x \in G: \varphi(x) \in \bar{N}\}$ then prove that $\frac{G}{N} \approx$ $\frac{\bar{G}}{\bar{N}}$.
3. a) Prove that every integral domain can be imbedded in a field.
b) Prove that the ideal $A=(p(x))$ in $F[x]$ is a minimal ideal if and only if $p(x)$ is irreducibleover F.
c) Let V is finite-dimensional and W is a subspace of V then prove that W is finite dimensional, $\operatorname{dim} W \leq \operatorname{dim} V$ anddim $V / W=\operatorname{dim} V-\operatorname{dim} W$
4. a) Prove that $\mathrm{I}(\mathrm{G}) \approx G / Z$, where $\mathrm{I}(\mathrm{G})$ is the group of inner automorphisms of G and Z is the centre of G.
b) Prove that an ideal M of an Euclidean ring R is a maximal ideal if and only if the ideal M is the principal ideal generated by a prime element of R .
5. a) If F is any field, prove that the ring $\mathrm{F}(\mathrm{x})$ of all polynomials in x over F is a Euclidean ring.
b) If V and W are of dimensions m and n respectively over F then prove that Hom (V, W) is of dimension mn over F.

Course Code : 018E1120- REAL ANALYSIS

(5x5=25 Marks)

1. a) State and Prove Intermediate value theorem for Derivatives.
b) State and Prove Chain rule for Derivatives.
2. a) Let f be of bounded variation on $[a, b]$ and V be defined on $[a, b]$ as follows $V(x)=V_{f}(a, x)$ if $a \leq x \leq b$ and $V(a)=0$ then Prove that
i. $\quad V$ is an increasing function on $[a, b]$.
ii. $\quad(V-f)$ is an increasing function on $[a, b]$.
b) Write the Additive property of Total variation.
3. a) If $f \in R(\alpha)$ on $[a, b]$, then prove that $\alpha \in R(f)$ on $[a, b]$ and $\int_{a}^{b} f d \alpha+\int_{a}^{b} \alpha d f=\alpha(b) f(b)-\alpha(a) f(a)$.
b) State and Proveeuler's summation formula.
4. a) State and Prove First Mean Value theorem for Riemann Stieltges Integral.
b) Write the necessary conditions for existence of RiemannStieltges Integrals.
5. a) State and Prove Tauber's theorem.
b) State and Prove Abel's limit theorem.

Course Code : 018E1130

DIFFERENTIAL EQUATIONS AND APPLICATIONS

(5x5=25 Marks)

1. a) Solve $y^{\prime \prime}+2 y^{\prime}+2 y=\frac{e^{-x}}{\cos ^{3} x}$ by using the method of variation of parameter.
b) Solve $y^{\prime \prime}+4 y=4 \tan 2 x$ by using the method of variation of parameter.
2. a) Solve the Bessel equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0$ in series taking $2 n$ as non- integral.
b) Solve the series the Legendre's equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+4 y=$ 0 near the singular point $x=1$.
3. a) Find the general solution of $\left(x^{2}-1\right) y^{\prime \prime}+(5 x+y) y^{\prime}+(n+1) n y=0$.
b) Drive the Gauss's hyper geometric equation.
4. a) Prove that

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\left\{\begin{array}{lr}
0 & \text { if } m \neq n \\
\frac{2}{2 n+1} & \text { if } m=n
\end{array}\right.
$$

b) Find the first three terms of the Legendre series $f(x)=e^{x}$.
5. a) Prove that

$$
\int_{0}^{1} x J_{p}\left(\lambda_{m} x\right) J_{p}\left(\lambda_{n} x\right) d x= \begin{cases}0 & \text { if } m \neq n \\ \frac{1}{2} J_{p+1}\left(\lambda_{n}\right)^{2} & \text { if } m=n\end{cases}
$$

b) Prove that

$$
J_{p}-J_{-p}^{\prime}-J_{p}^{\prime} J_{-p}=\frac{-2 \sin p \pi}{\pi x}
$$

Course Code : 018E1140 - ANALYTICAL MECHANICS
 (5x5=25 Marks)

1. a) Explain the kinetic energy of a rigid body with a fixed point and angular momentum of a rigid body.
b) Explain general motion of the spherical pendulum.
2. a) Explain the equation of motion of a particle relative to the Earth surface.
b) Explain general motion of a top.
3. a) Explain the Lagrange's equation for any simple dynamical system.
b) State and prove Hamilton's principle.
4. a) Explain the Angular Momentum and General Motion of a Rigid body.
b) Discuss the motion of a simple pendulum in terms of elliptic functions and the Periodic Time of the simple pendulum
5. a) Explain the motion of a Rolling disk.
b) Describe the Lagrange's equations for motion of a particle in a plane.
